EPO-FIX

HIGH-PERFORMANCE EPOXY CHEMICAL ANCHOR

- CE option 1 for cracked and uncracked concrete
- C2 Seismic performance category (M12-M24)
- Certificate for recasting with reinforcement bars (ETA-23/0420)
- Certified fire resistance F120
- Comply with LEED® v4 and v4.1 BETA
- A+ Class: emission of volatile organic compounds (VOC) in living environments
- Ideal for extra-heavy anchor systems and reinforcement rods
- Excellent long-term creep behaviour
- Dry or wet concrete
- Concrete with submerged holes
- Overhead application allowed
- · Certified installation also with hollow drill bit
- Maximum tensile strength

USA, Canada and more design values available online.

CODES AND DIMENSIONS

CODE	form	pcs	
	[ml]	[US fl oz]	
EPO585	585	19.78	12

Expiry from date of manufacturing: 24 months. Storage temperature between +5 and +35° C.

ADDITIONAL PRODUCTS - ACCESSORIES

type	description	format	pcs
MAMDB	double cartridge gun	585 ml	1
STING	nozzle	-	12
STINGRED	nozzle tip reducer	-	1
FILL	filling washer	M8-M24	-
BRUH	steel pipe cleaner	M8-M30	-
BRUHAND	grip and extension for pipe cleaner	-	1
CAT	compressed air tool	-	1
PONY	blow pump	-	1
IR (INTERNAL THREADED ROD)	bushing with internal metric thread	M8-M16	-

INSTALLATION TIME AND TEMPERATURE

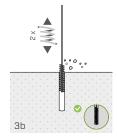
support temperature	cartridge temperature	workability time	curing time before loading ^(*)
0°C ÷ + 4°C		90 min	144 h
5°C ÷ + 9°C		80 min	48 h
10°C ÷ + 14°C		60 min	28 h
15°C ÷ + 19°C	5°C ÷ + 40°C	40 min	18 h
20°C ÷ + 24°C	5 C - + 40 C	30 min	12 h
25°C ÷ + 34°C		12 min	9 h
35°C ÷ + 39°C		8 min	6 h
+ 40°C		8 min	4 h

 $[\]overline{(\star)}$ For wet support, the waiting time for load application must be doubled

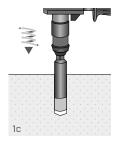
MOUNTING

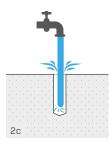
Hole execution: three different installation possibilities.

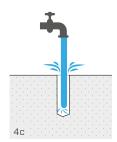
a. INSTALLATION WITH

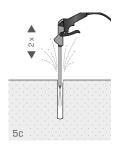


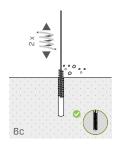
b. ASSEMBLY WITH HAMMER DRILLING HD

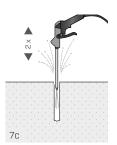


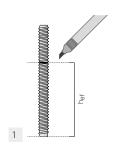


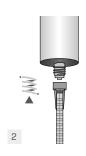


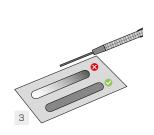

c. ASSEMBLY WITH DIAMOND DRILL BIT

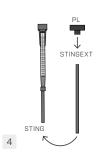




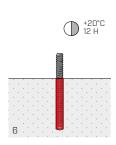


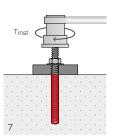


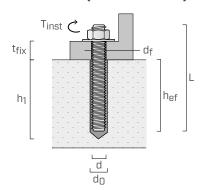




Rod installation:







INSTALLATION

INSTALLATION GEOMETRY FEATURES ON CONCRETE

THREADED RODS (INA or MGS TYPE)

d anchor diameter do

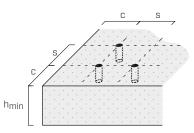
 d_{f}

Tinst

hole diameter in the concrete support

hef effective anchoring depth

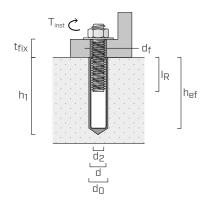
hole diameter in the element to be fastened


maximum tightening torque

anchor length

maximum fastening thickness $t_{\text{fix}} \\$ h_1

minimum hole depth



d	[mm]	M8	M10	M12	M16	M20	M24	M27	M30
d ₀	[mm]	10	12	14	18	22	28	30	35
h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
d _f	[mm]	9	12	14	18	22	26	30	33
T _{inst}	[Nm]	10	20	40	60	100	170	250	300

			M8	M10	M12	M16	M20	M24	M27	M30
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance	C _{min}	[mm]	35	40	45	50	60	65	75	80
Minimum thickness of concrete support	h _{min}	[mm]	h _{ef} +	- 30 ≥ 10	0 mm		ŀ	n _{ef} + 2 d	0	

d

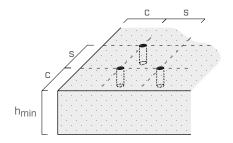
BUSHING WITH INTERNAL METRIC THREAD (IR TYPE)

 d_2 internal threaded rod diameter

diameter of the element anchored on concrete

 $d_0\\$ hole diameter in the concrete support

h_{ef} effective anchoring depth


 d_f hole diameter in the element to be fastened

T_{inst} maximum tightening torque

maximum fastening thickness $\mathsf{t}_{\mathsf{fix}}$ h_1 minimum hole depth

length of internal threaded rod I_{R}

d	[mm]	IR-M6	IR-M8	IR-M10	IR-M12	IR-M16	IR-M20
d ₂	[mm]	6	8	10	12	16	20
d	[mm]	10	12	16	20	24	30
d_0	[mm]	12	14	18	22	28	35
h _{ef,min}	[mm]	60	70	80	90	96	120
$h_{\text{ef,max}}$	[mm]	200	240	320	400	480	600
d_{f}	[mm]	7	9	12	14	18	22
T _{inst}	[Nm]	20	40	60	100	170	300
$I_{R,min}$	[mm]	6	8	10	12	16	20
In	[mm]	10	12	16	20	24	30

			IR-M6	IR-M8	IR-M10	IR-M12	IR-M16	IR-M20
Minimum spacing	S _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	C _{min}	[mm]	40	45	50	60	65	80
Minimum thickness of concrete support	h_{min}	[mm]	h _{ef} + 30	≥ 100 mm		h _{ef} +	2 d ₀	

STRUCTURAL CHARACTERISTIC VALUES

Valid for a single threaded rod (INA or MGS) when installed in C20/25 grade concrete with a thin reinforcing layer, considering spacing, edge-distance, and base-concrete thickness as non-limiting parameters.

UNCRACKED CONCRETE⁽⁵⁾

TENSION

rod	h _{ef,standard}		N _{Rk,c} N _{Rk,s} [kN]			h _{ef,max}		N_{Rk}	,s [kN]	
	[mm]	5.8 steel	Υм	8.8 steel	Υм	[mm]	5.8 steel	Υм	8.8 steel	Υм
M8	80	18,0		29,0	$\gamma_{Ms} = 1,5^{(1)}$	160	18,0		29,0	
M10	90	29,0	$\gamma_{Ms} = 1.5^{(1)}$	42,0		200	29,0		46,0	
M12	110	42,0		56,8		240	42,0		67,0	γ _{Ms} = 1,5
M16	128	71,2		71,2		320	79,0	1.5	126,0	
M20	170	109,0		109,0	$\gamma_{Mc} = 1.5^{(2)}$	400	123,0	$\gamma_{Ms} = 1.5$	196,0	
M24	210	149,7	$\gamma_{Mc} = 1,5^{(2)}$	149,7		480	177,0		282,0	
M27	240	182,9		182,9		540	230,0		367,0	
M30	270	218,3		218,3		600	281,0		449,0	

SHEAR

rod	h _{ef}	V _{Rk,s} ⁽¹⁾ [kN]					
	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs		
M8	≥ 60	11,0		15,0	4.25		
M10	≥ 60	17,0		23,0			
M12	≥ 70	25,0		34,0			
M16	≥ 80	47,0	1,25	63,0			
M20	≥ 120	74,0	1,25	98,0	1,25		
M24	≥ 150	106,0		141,0			
M27	≥ 180	138,0		184,0			
M30	≥ 200	168,0		224,0			

CRACKED CONCRETE^[5]

TENSION

rod	h _{ef,standard}		$N_{Rk,p} \mid N_{Rk,c} \mid N \mid$			h _{ef,max}	$h_{ef,max}$ $N_{Rk,s} N_{Rk,p} [kN]$			
	[mm]	5.8 steel	Υм	8.8 steel	YΜ	[mm]	5.8 steel	Υм	8.8 steel	Υм
M8	80	14,1		14,1		160	18,0		28,2	1 5(4)
M10	90	19,8	$\gamma_{Mp} = 1.5^{(4)}$	19,8	$\gamma_{Mp} = 1.5^{(4)}$	200	29,0		44,0	$\gamma_{Mp} = 1,5^{(4)}$
M12	110	35,3		35,3		240	42,0		67,0	
M16	128	49,9		49,9		320	78,0	1.5	125,0	
M20	170	76,3		76,3		400	122,0	$\gamma_{Ms} = 1.5$	196,0	$\gamma_{Ms} = 1.5^{(1)}$
M24	210	104,8	$\gamma_{Mc} = 1,5^{(2)}$	104,8	$\gamma_{Mc} = 1.5^{(2)}$	480	176,0		282,0	
M27	240	128,0		128,0		540	230,0		368,0	
M30	270	152,8		152,8		600	280,0		449,0	

SHEAR

rod	h _{ef}	V _{Rk,s} ⁽¹⁾ [kN]				
	[mm]	5.8 steel	YMs	8.8 steel	YMs	
M8	80	11,0		15,0		
M10	90	17,0		23,0		
M12	110	25,0		34,0		
M16	128	47,0	1 25	63,0	1 25	
M20	170	74,0	1,25	98,0	1,25	
M24	210	106,0		141,0		
M27	240	138,0		184,0		
M30	270	168,0		224,0		

incremental factor for NRk,p (3)							
	C25/30	1,02					
	C30/37	1,04					
Ψ_{c}	C40/50	1,07					
	C50/60	1,10					

NOTES

- (1) Steel failure mode.
- (2) Concrete cone failure method.
- (3) Tensile-strength increment factor (excluding steel failure) for both cracked and uncracked concrete.
- (4) Pull-out and concrete cone failure.
- $^{(5)}\,$ Refer to the relevant ETA document for use high bond rods.

In the presence of flooded holes, the factors γ_M in the case of both the concrete cone slipping and failure and the concrete cone formation are both equal to 1.8

Component A classification: Skin Irrit. 2; Eye Irrit. 2; Skin Sens. 1; Aquatic Chronic 2. Component B classification: Acute Tox. 4; Skin Corr. 1A; Eye Dam. 1; Skin Sens. 1

GENERAL PRINCIPLES

- * The characteristic values are according to EN 1992-4:2018 with a factor $\alpha_{sus} {=}\, 0.6$ and in accordance with ETA-23/0419.
- The design values are obtained from the characteristic values as follows: $R_d=R_k/\gamma_M.$ Coefficients γ_M are listed in the table in accordance with the failure characteristics and product certificates.
- For the calculation of anchors with reduced spacing, or too close to the edge, please refer to ETA. Similarly, in case of fastening on concrete-supports with a better-grade, limited thickness or a thick reinforcing layer please see ETA.
- For the design of anchors subjected to seismic loading refer to ETA and to EN 1992-4:2018.
- For specifications of the diameters covered by the various certifications (cracked concrete, uncracked concrete, seismic applications), please refer to ETA.

STRUCTURAL CHARACTERISTIC VALUES

Valid for a single threaded rod (INA or MGS) when installed with IR in C20/25 grade concrete with a thin reinforcing layer, considering spacing, edge-distance, and base-concrete thickness as non-limiting parameters.

UNCRACKED CONCRETE

TENSION

rod	h _{ef,min}	N _{Rk,c} N _{Rk,s} [kN]			
	[mm]	5.8 steel	Υм	8.8 steel	Υм
IR-M6	60	10,0		16,0	1,5(1)
IR-M8	70	17,0	1,5 ⁽¹⁾	27,0	1,5'-'
IR-M10	80	29,0		35,2	
IR-M12	90	42,0		42,0	1,5 ⁽²⁾
IR-M16	96	46,3	1,5 ⁽²⁾	46,3	1,3(-/
IR-M20	120	64,7		64,7	

SHEAR

rod	h _{ef,min}	$V_{Rk,s}^{(1)}$ [kN]					
	[mm]	5.8 steel	YMs	8.8 steel	ΥMs		
IR-M6	60	5,0		8,0			
IR-M8	70	9,0		14,0			
IR-M10	80	15,0	1,25	23,0	1,25		
IR-M12	90	21,0	1,25	34,0	1,23		
IR-M16	96	38,0		60,0			
IR-M20	120	61,0		98,0			

CRACKED CONCRETE

TENSION

rod	h _{ef,min}	N _{Rk,s} N _{Rk}	,c [kN]	h _{ef}	N _{Rk,s} [kN]	h _{ef}	N _{Rk,s} [k	N]
	[mm]	5.8 steel	Υм	[mm]	5.8 steel	Υм	[mm]	8.8 steel	Υм
IR-M6	60	10,0	1,5 ⁽¹⁾	≥ 70	10,0		≥ 70	16,0	
IR-M8	70	17,0	1,5	≥ 80	17,0		≥ 90	27,0	
IR-M10	80	24,6		≥ 100	29,0	1,5 ⁽¹⁾	≥ 130	46,0	1,5 ⁽¹⁾
IR-M12	90	29,4	1 [(2)	≥ 120	42,0	1,5	≥ 160	67,0	1,5
IR-M16	96	32,4	1,5 ⁽²⁾	≥ 180	76,0		≥ 240	121,0	
IR-M20	120	45,3		≥ 240	123,0		≥ 330	196,0	

SHEAR

rod	h _{ef,min}	V _{Rk,s} V _{Rk,cp} [kN]				
	[mm]	5.8 steel	YMs	8.8 steel	Υм	
IR-M6	60	5,0		8,0	1,25 ⁽¹⁾	
IR-M8	70	9,0		14,0		
IR-M10	80	15,0	1,25	23,0		
IR-M12	90	21,0	1,23	34,0		
IR-M16	96	38,0		64,8	1.5 ⁽⁵⁾	
IR-M20	120	61,0		90,5	1,5	

incremental factor for NRk,p ⁽³⁾				
	C25/30	1,02		
	C30/37	1,04		
Ψ_{c}	C40/50	1,07		
	C50/60	1,10		

NOTES

- (1) Steel failure mode.
- (2) Concrete cone failure method.
- (3) Tensile-strength increment factor (excluding steel failure) for both cracked and uncracked concrete.
- (4) Pull-out and concrete cone failure.
- $^{(5)}$ Pry-out failure in the concrete.

In the presence of flooded holes, the factors γ_M in the case of both the concrete cone pull-out and failure and concrete cone formation are both equal to 1.8.

Component A classification: Skin Irrit. 2; Eye Irrit. 2; Skin Sens. 1; Aquatic Chronic 2. Component B classification: Acute Tox. 4; Skin Corr. 1A; Eye Dam. 1; Skin Sens. 1

GENERAL PRINCIPLES

- The values are according to EN 1992-4:2018 with a factor $\alpha_{\text{sus}}{=}0.6$ and in accordance with ETA-23/0419.
- The design values are obtained from the characteristic values as follows: $R_d = R_k/\gamma_M. \ \ Coefficients \ \gamma_M \ \ are listed in the table in accordance with the failure characteristics and product certificates.$
- For the calculation of anchors with reduced spacing, or too close to the edge, please refer to ETA. Similarly, in case of fastening on concrete-supports with a better-grade, limited thickness or a thick reinforcing layer please see ETA.
- For the design of anchors subjected to seismic loading refer to ETA and to EN 1992-4:2018.
- For specifications of the diameters covered by the various certifications (cracked concrete, uncracked concrete, seismic applications), please refer to ETA.