TITAN PLATE C CONCRETE

PLATE FOR SHEAR LOADS

VERSATILE

It can be used for continuous connection to the substructure of both CLT and light timber frame walls.

INNOVATIVE

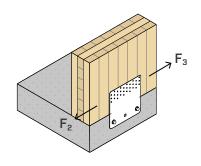
Designed to be partially or completely fastened with nails or screws. Possibility of installation even in the presence of bedding grout.

CALCULATED AND CERTIFIED

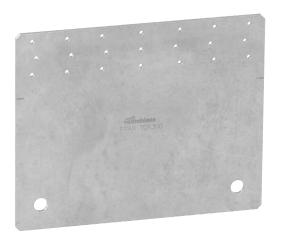
CE marking according to EN 14545. Available in 2 versions. TCP300 with increased thickness optimised for CLT.

Solution USA, Canada and more design values available online.

SERVICE CLASS



TCP200: DX51D + Z275 carbon steel



TCP300: S355 + Fe/Zn12c carbon steel

EXTERNAL LOADS

FIELDS OF USE

Shear joints for timber walls.

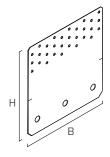
Timber-to-concrete or timber to-steel configurations.

Suitable for walls aligned to the concrete edge.

Can be applied to:

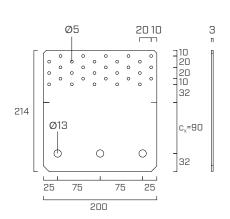
- solid timber and glulam
- timber frame
- CLT and LVL panels

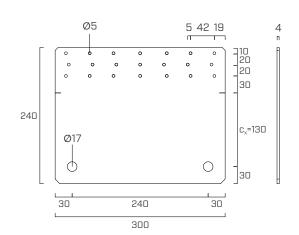
ADDED STOREYS


Ideal for making flat joints between concrete or masonry elements and CLT panels. Construction of continuous shear connections.

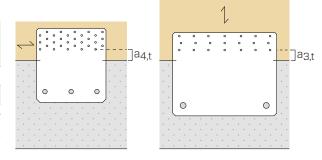
HYBRID STRUCTURES

Within hybrid timber-to-steel structures, it can be used for shear connections by simply aligning the edge of the timber with the edge of the steel element.


■ CODES AND DIMENSIONS


CODE	В	Н	holes	S	В	Н	holes	S	n _V Ø5 n _V Ø0.20		pcs
	[mm]	[mm]		[mm]	[in]	[in]		[in]	[pcs]	5	
TCP200	200	214	Ø13	3	8	8 7/16	Ø0.52	0.12	30	•	10
TCP300	300	240	Ø17	4	11 3/4	9 1/2	Ø0.67	0.16	21	•	5

GEOMETRY

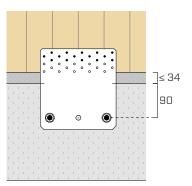

FASTENERS

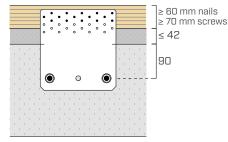
type	description	d	support	page
		[mm]		
LBA	high bond nail	4		570
LBS	round head screw	5	2)))]]	571
LBS EVO	C4 EVO round head screw	5	2)))])	571
SKR	screw-in anchor	12 - 16		528
VIN-FIX	vinyl ester chemical anchor	M12 - M16		545
HYB-FIX	hybrid chemical anchor	M12 - M16		552
EPO-FIX	epoxy chemical anchor	M12 - M16		557

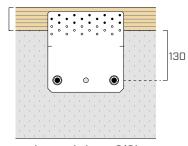
INSTALLATION

TIMBER minimum distanc	es		nails LBA Ø4	screws LBS Ø5
C/GL	a _{4,t}	[mm]	≥ 20	≥ 25
CLT	a _{3,t}	[mm]	≥ 28	≥ 30

- C/GL: minimum distances for solid timber or glulam consistent with EN 1995;2014 according to ETA considering a timber density $\rho_k \leq 420 \text{ kg/m}^3$
- CLT minimum distances for Cross Laminated Timber according to $\ddot{\text{O}}$ NORM EN 1995:2014 (Annex K) for nails and ETA-11/0030 for screws

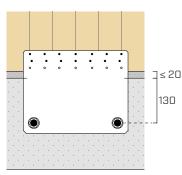



FASTENING PATTERNS

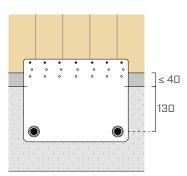

PARTIAL FASTENING

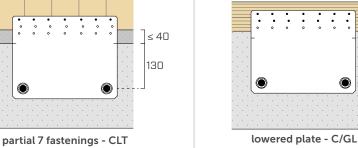
In the presence of design requirements such as varying stress values or the presence of a grout between the wall and the support surface, it is possible to use pre-calculated partial nailing patterns or to position the plates as required (e.g. lowered plates). Take care to respect the minimum distances indicated in the table and verify the strength of the anchor-to-concrete group taking into account the increase in distance from the edge (cx). Below there are some examples of possible limit configurations:

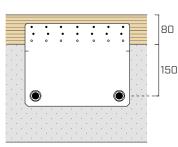
TCP200

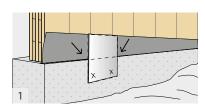


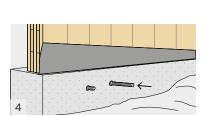
partial 15 fasteners - CLT

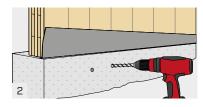

partial 15 fastenings - C/GL

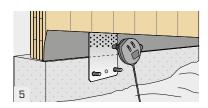

lowered plate - C/GL

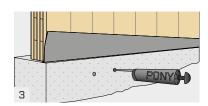

TCP300

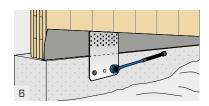

partial 14 fastenings - CLT



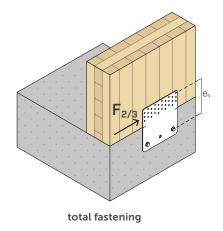

MOUNTING

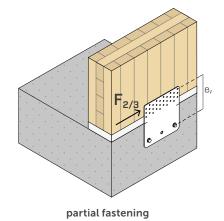

Positioning of the TITAN TCP with the dashed line at the timber-concrete interface and hole marking.


Injection of the anchor and insertion of the threaded rods into the holes.


Removal of the TITAN TCP plate and drilling of the concrete support.

Installation of the TITAN TCP and nailing.




Accurate hole cleaning.

Positioning of nuts and washers by adequate tightening.

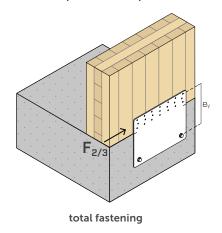
■ STRUCTURAL VALUES | TCP200 | TIMBER-TO-CONCRETE | F_{2/3}

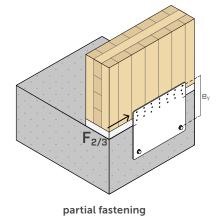
TIMBER STRENGTH

			TIMBE	R		STI	EEL	CC	fastening holes Ø13 Ø n _V [mm] [pcs]		
configuration	fastening holes Ø5			R _{2/3,k timber} (1)	R _{2/3,k CLT} ⁽²⁾	R _{2/3,k} steel		fastening holes Ø13			
on timber	type	ØxL	n _V					Ø	n _V	e _y (3)	
		[mm]	[pcs]	[kN]	[kN]	[kN]	Ysteel	[mm]	[pcs]	[mm]	
total factoring	LBA	Ø4 x 60	30	62,9	84,9	21,8				147	
total fastening	LBS	Ø5 x 60	30	54,0	69,8	21,6	Үм2	M12	2	147	
	LBA	Ø4 x 60	15	31,5	42,5	20.5		IMIZ		160	
partial fastening	LBS	Ø5 x 60	15	27,0	34,9	20,5	Үм2			162	

CONCRETE STRENGTH

Concrete strength values of some of the possible anchoring solutions, according to the configurations adopted for fastening on timber (e_v). It is assumed that the plate is positioned with the assembly notches at the timber-to-concrete interface (distance between anchor and concrete edge $c_x = 90 \text{ mm}$).


			total fastening (e _y = 147 mm)	partial fastening (e _y = 162 mm)
configuration	fastening	holes Ø13	R _{2/3,d concrete}	R _{2/3,d concrete}
on concrete	type	ØxL		
		[mm]	[kN]	[kN]
	VINL FIVE O	M12 x 140	12,6	11,5
uncracked	VIN-FIX 5.8	M12 x 195	13,4	12,2
	SKR	12 x 90	11,3	10,3
	AB1	M12 x 100	13,1	11,9
	VIN-FIX 5.8	M12 x 140	8,9	8,1
anadrod	VIIN-FIX 5.8	M12 x 195	9,5	8,7
Cracked	SKR	12 x 90	8,0	7,3
	AB1	M12 x 100	9,2	8,4
	HYB-FIX 8.8	M12 x 140	6,6	6,1
uncracked cracked seismic	DID-FIX 8.8	M12 x 195	8,1	7,4
	EPO-FIX 8.8	M12 x 140	7,6	6,9


 $^{^{}m (1)}$ Strength values for use on solid timber or glulam platform beam, calculated considering the effective number according to Table 8.1 (EN 1995:2014).

⁽²⁾ Strength values for use on CLT.

 $^{^{(3)}}$ Eccentricity of calculation for verification of the anchor-to-concrete group.

■ STRUCTURAL VALUES | TCP300 | TIMBER-TO-CONCRETE | F_{2/3}

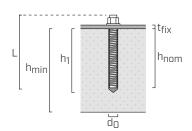
TIMBER STRENGTH

			TIMBI	ER		ST	EEL	CC	Ø n _V		
configuration	faste	ning holes @	0 5	R _{2/3,k timber} (1)	R _{2/3,k CLT} (2)	R _{2/3,k steel}		fastening holes Ø17			
on timber	type	ØxL	n _V					Ø	n _V	e _y (3)	
		[mm]	[pcs]	[kN]	[kN]	[kN]	Ysteel	[mm]	[pcs]	[mm]	
total fastanina	LBA	Ø4 x 60	21	43,4	59,4	64.0				180	
total fastening	LBS	Ø5 x 60	21	36,8	48,9	64,0	Үм2				
partial fastening	LBA	Ø4 x 60	14	29,0	39,6	60,5			2	190	
14 fasteners	LBS	Ø5 x 60	14	24,6	32,6	60,5	Үм2	M16	2	190	
partial fastening	LBA	Ø4 x 60	7	14,5	19,8	57,6				200	
7 fasteners	LBS	Ø5 x 60	7	12,3	16,3	57,6	Үм2			200	

CONCRETE STRENGTH

Concrete strength values of some of the possible anchoring solutions, according to the configurations adopted for fastening on timber (e_y) . It is assumed that the plate is positioned with the assembly notches at the timber-to-concrete interface (distance between anchor and concrete edge $c_x = 130$ mm).

			total fastening (e _y = 180 mm)	partial fastening (e _y = 190 mm)	partial fastening (e _y = 200 mm)
configuration	fastening	holes Ø17	R _{2/3,d concrete}	R _{2/3,d concrete}	R _{2/3,d concrete}
on concrete	type Ø x L				
		[mm]	[kN]	[kN]	[kN]
	VIN-FIX 5.8	M16 x 195	29,6	28,3	27,0
uncracked	SKR	16 x 130	26,0	24,8	23,7
	AB1	M16 x 145	30,2	28,7	27,3
	VIN-FIX 5.8	M16 x 195	21,0	20,0	19,1
cracked	SKR	16 x 130	18,4	17,6	16,8
	AB1	M16 x 145	21,4	20,3	19,3
	HYB-FIX 8.8	M16 x 195	16,8	16,2	15,6
seismic	□ 1 D-FIX 8.8	M16 x 245	18,6	17,7	16,9
	EPO-FIX 8.8	M16 x 195	17,8	17,0	16,9


GENERAL PRINCIPLES

For the GENERAL PRINCIPLES of calculation, see page 306.

ANCHORS INSTALLATION PARAMETERS

installation	anchor type		t _{fix}	h _{ef}	h _{nom}	h ₁	d ₀	h _{min}	
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
	VIN-FIX 5.8 HYB-FIX 8.8 EPO-FIX 8.8	M12 x 140	3	112	112	120	14	150	
TCP200	SKR	12 x 90	3	64	87	110	10	150	
TCF200	AB1	M12 x 100	3	70	80	85	12		
	VIN-FIX 5.8	M12 x 195	3	170	170	175	14	200	
	HYB-FIX 8.8	M12 X 193						200	
TCP300	VIN-FIX 5.8 HYB-FIX 8.8 EPO-FIX 8.8	M16 x 195	4	164	164	170	18	200	
	SKR	16 x 130	4	85	126	150	14		
	AB1	M16 x 145	4	85	97	105	16		
	HYB-FIX 8.8	M16 x 245	4	210	210	215	18	250	

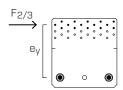
Precut INA threaded rod, with nut and washer: see page 562. MGS threaded rod class 8.8 to be cut to size: see page 174.

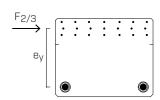
t_{fix} h_{nom} h_{ef} h₁ d₀

hmin

fastened plate thickness nominal anchoring depth effective anchoring depth minimum hole depth hole diameter in the concrete support

concrete minimum thickness


■ ANCHORS VERIFICATION FOR STRESS LOADING F_{2/3}


Fastening to concrete using anchors must be verified on the basis of the load acting on the anchors, which depend on the timber fastening configuration.

The position and number of nails/screws determine the ey eccentricity value, understood as the distance between the centre of gravity of the nailing and that of the anchors.

The anchor group must be verified for:

$$V_{Sd,x} = F_{2/3,d}$$

 $M_{Sd,z} = F_{2/3,d} \cdot e_y$

GENERAL PRINCIPLES

- Characteristic values according to EN 1995:2014.
- Design values can be obtained from characteristic values as follows:

$$R_{d} = min \begin{cases} (R_{k, timber} \text{ or } R_{k, CLT}) \cdot k_{mod} \\ \hline \gamma_{M} \\ \hline R_{k, steel} \\ \hline \gamma_{M2} \\ R_{d, concrete} \end{cases}$$

The coefficients k_{mod},γ_M and γ_{M2} should be taken according to the current regulations used for the calculation.

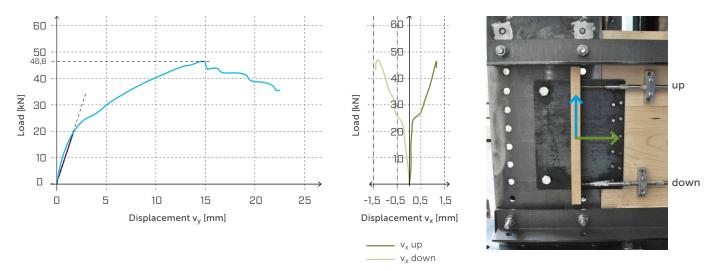
- The calculation process used a timber characteristic density of ρ_k = 350 kg/ m^3 and C25/30 concrete with a thin reinforcing layer and minimum thickness indicated in the table.
- Dimensioning and verification of timber and concrete elements must be carried out separately.
- The strength values are valid for the calculation hypothesis defined in the table; for boundary conditions different from the ones in the table (e.g. minimum distances from the edge), the anchors-to-concrete can be verified using MyProject calculation software according to the design requirements.

- Seismic design in performance category C2, without ductility requirements on anchors (option a2) and elastic design according to EN 1992:2018. For chemical anchors it is assumed that the annular space between the anchor and the plate hole is filled ($\alpha_{gap} = 1$).
- The product ETAs for the anchors used in the concrete-side strength calculation are indicated below:
 - VIN-FIX chemical anchor according to ETA-20/0363;
 - HYB-FIX chemical anchor according to ETA-20/1285;
 - EPO-FIX chemical anchor according to ETA-23/0419;
 - SKR screw-in anchor according to ETA-24/0024;
 - AB1 mechanical anchor according to ETA-17/0481 (M12);
 - AB1 mechanical anchor according to ETA-99/0010 (M16).

INTELLECTUAL PROPERTY

- TITAN PLATE C plates are protected by the following Registered Community Designs:
 - RCD 002383265-0003;
- RCD 008254353-0014.

EXPERIMENTAL INVESTIGATIONS | TCP300


In order to calibrate the numerical models used for the design and verification of the TCP300 plate, an experimental campaign was carried out in collaboration with the Institute for BioEconomy (IBE) - San Michele all'Adige.

The connection system nailed or screwed to CLT panels has been shear stressed through monotonic tests in displacement control, registering the load, displacement in the two main directions and collapse mode.

The results obtained were used to validate the analytical calculation model for the TCP300 plate, based on the hypothesis that the shear centre is placed at the centre of gravity of the fastenings on timber. Therefore that the anchors, usually the weak point of the system, are stressed not only by the shear actions but also by the local moment.

The study in different fastening configurations (Ø4 nails/Ø5 screws, full nailing, partial nailing with 14 connectors, partial nailing with 7 connectors) shows that the mechanical behaviour of the plate is strongly influenced by the **relative stiffness of the connectors** on timber compared to that of the anchors, in tests simulated by bolting on steel.

In all cases a shear failure mode of the timber fasteners has been observed, which does not result in evident plate rotation. Only in some cases (full nailing) the non-negligible rotation of the plate leads to an increase in stress on the timber fasteners resulting from a redistribution of the local moment with consequent stress relief on the anchors, which represent the limiting point of the overall strength of the system.

 $Load-to-displacement\ diagrams\ for\ TCP300\ specimen\ with\ partial\ nailing\ (no.\ 14\ LBA\ \varnothing 4\ x\ 60\ mm\ nails).$

Further investigations are necessary in order to define an analytical model that can be generalized to the different configurations of use of the plate that is able to provide the actual stiffness of the system and the redistribution of stresses as the boundary conditions (connectors and base materials) vary.