TITAN F

ANGLE BRACKET FOR SHEAR LOADS

LOW HOLES

Ideal for TIMBER FRAME, designed for fastening on platform beams or on the studs of the frame structures. It also has certified values for use with partial nailing.

TIMBER FRAME

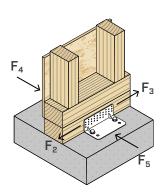
Thanks to the lowered position of the holes on the vertical flange, it offers excellent shear strength values even on low height platform beams (38 mm | 2"). R_{2,k} up to 51.8 kN on concrete and 55.1 kN on timber.

HOLES FOR CONCRETE

The TITAN angle bracket are designed to offer two fastening possibilities, in order to avoid interference with the rods in the concrete support.

USA, Canada and more design values available online.

SERVICE CLASS



TITAN F: DX51D + Z275 carbon steel.

EXTERNAL LOADS

SEAL BAND

FIELDS OF USE

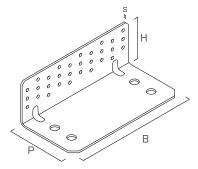
Shear joints for timber walls. Optimised for fastening frame walls. Timber-to-timber, timber-to-concrete and timber-to-steel configurations.

Can be applied to:

- solid timber and glulam
- timber frame
- CLT and LVL panels

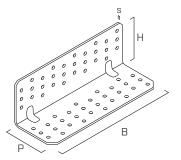
TIMBER-TO-TIMBER

Ideal for shear joints between floor and wall and between wall and wall. The high shear strength allows to optimize the number of fastenings.

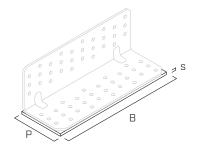

PARTIAL NAILING

Partial nailing allows installation even with the presence of bedding grout. It can also be used on thin frame walls (38 mm | 2").

■ CODES AND DIMENSIONS

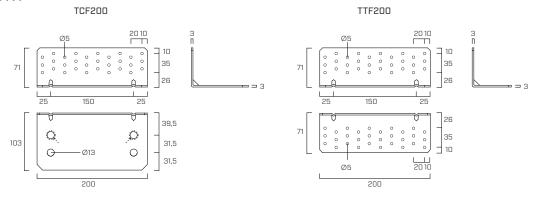

TITAN F - TCF | CONCRETE-TO-TIMBER JOINTS

CODE	В	Р	Н	holes	n _V Ø5	s		pcs
	[mm] <i>[in]</i>	[mm] <i>[in]</i>	[mm] <i>[in]</i>	[mm] <i>[in]</i>	n _V Ø0.20 [pcs]	[mm] <i>[in]</i>		
TCF200	200 8	103 <i>4 1/16</i>	71 2 13/16	Ø13 Ø0.52	30	3 0.12	•	10

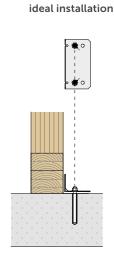

TITAN F - TTF | TIMBER-TO-TIMBER JOINTS

CODE	В	Р	Н	n _H Ø5 n _H Ø0.20	n _V Ø5 n _V Ø0.20	s		pcs
	[mm] <i>[in]</i>	[mm] <i>[in]</i>	[mm] <i>[in]</i>	[pcs]	[pcs]	[mm] <i>[in]</i>		
TTF200	200 8	71 2 13/16	71 2 13/16	30	30	3 0.12	•	10

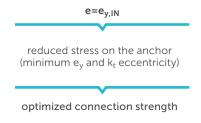
ACOUSTIC PROFILE | TIMBER-TO-TIMBER JOINTS


CODE	type	B [mm] <i>[in]</i>	P [mm] <i>[in]</i>	s [mm] <i>[in]</i>		pcs
XYL3570200	XYLOFON PLATE	200 8	70 2 3/4	6 0.24	•	10

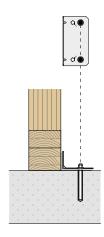
FASTENERS

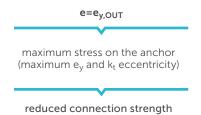

type	description	d	support	page
		[mm]		
LBA	high bond nail	4	2)))))	570
LBS	round head screw	5	2)))))	571
LBS EVO	C4 EVO round head screw	5	2)))))	571
AB1	CE1 expansion anchor	12		536
SKR	screw-in anchor	12		528
VIN-FIX	vinyl ester chemical anchor	M12	* 1 × 1	545
HYB-FIX	hybrid chemical anchor	M12		552
EPO-FIX	epoxy chemical anchor	M12		557

GEOMETRY

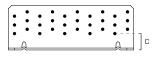


INSTALLATION ON CONCRETE


To fix the TITAN TCF200 angle bracket to the concrete, 2 anchors must be used, according to one of the following installation modes:

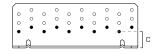

2 anchors positioned in the INTERNAL HOLES (IN) (identified by a mark on the product)

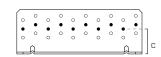
alternative installation



2 anchors placed in the EXTERNAL HOLES (**OUT**) (e.g. in case of clash between the anchor and the concrete support reinforcement)

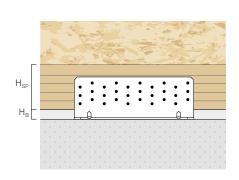
FASTENING PATTERNS


In the presence of design requirements such as $F_{2/3}$ stresses of different value or presence of sill or platform beam, it is possible to use partial fastening patterns:

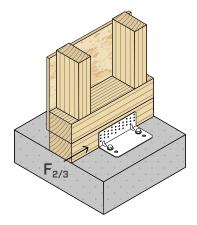

full pattern

pattern 3

pattern 2


pattern 1

configuration	fastening	holes Ø5		support		
	n _V	n _H	С			
	[pcs]	[pcs]	[mm]			
full pattern	30	30	26	•	•	
pattern 3	15	15	26	•	•	
pattern 2	10	10	26	•	•	
pattern 1	10	10	40	-	•	


INSTALLATION

MAXIMUM HEIGHT OF THE INTERMEDIATE H_{B} LAYER

configuration	fastening	holes Ø5	H _{B max}	H _{SP min}
	n _V	n _H	LBA Ø4 - LBS Ø5	
	[pcs]	[pcs]	[mm]	[mm]
full pattern	30	30	14	80
pattern 3	15	15	14	60
pattern 2	10	10	14	45
pattern 1	10	10	28	60

■ STRUCTURAL VALUES | TCF200 | TIMBER-TO-CONCRETE | F_{2/3}

TIMBER STRENGTH

configuration	faster	ning holes Ø5		R _{2/3,k timber}	K _{2/3,ser}
on timber	type	ØxL	n _V		
		[mm]	[pcs]	[kN]	[N/mm]
full matterns	LBA	Ø4 x 60	30	48,9	9000
full pattern	LBS	Ø5 x 70	30	51,8	9000
nottous 7	LBA	Ø4 x 60	15	28,7	
pattern 3	LBS	Ø5 x 70	13	27,7	-
nottown 2	LBA	Ø4 x 60	10	20,8	4000
pattern 2	LBS	Ø5 x 70	10	33,4	4000
	LBA	Ø4 x 60	10	17,2	7000
pattern 1	LBS	Ø5 x 70	10	27,5	3000

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions for anchors installed in the internal (IN) or external (OUT) holes.

configuration	fasten	ing holes Ø13		R _{2/3,d concrete}					
on concrete	type	ØxL	n _H	IN ⁽¹⁾	OUT ⁽²⁾	e _{y,IN}	e _{y,OUT}		
		[mm]	[pcs]	[kN]	[kN]	[mm]	[mm]		
uncracked	VIN-FIX 5.8	M12 x 140		35,5	29,1				
	VIN-FIX 8.8	M12 x 140		48,1	39,1				
	SKR	12 x 90		34,5	28,5				
	AB1	M12 x 100		35,4	28,9				
	VIN-FIX 5.8	M12 x 140		35,5	29,1				
and also d	VIN-FIX 8.8	M12 x 140	2	39,8	32,6	38,5	70		
cracked	SKR	12 x 90		24,3	20,0				
	AB1	M12 x 100		35,4	28,9				
seismic	HYB-FIX 8.8	M12 x 195		29,0	23,8				
	SKR	12 x 90		9,0	7,3				
	AB1	M12 x 100		10,6	8,7				

installation	anchor type			h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	VIN-FIX 5.8/8.8 HYB-FIX 8.8	M12 x 140	3	121	121	130	14	200
TCF200	HYB-FIX 8.8	M12 x 195	3	176	176	185	14	210
	SKR	12 x 90	3	64	87	110	10	200
	AB1	M12 x 100	3	70	80	85	12	200

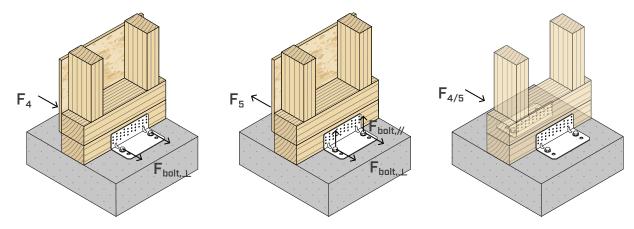
t_{fix} fastened plate thickness $\boldsymbol{h}_{\text{nom}}$ nominal anchoring depth h_{ef} effective anchoring depthh₁ minimum hole depth

 d_0 hole diameter in the concrete support

h_{min} concrete minimum thickness

Precut INA threaded rod, with nut and washer: see page 562. MGS threaded rod class 8.8 to be cut to size: see page 174.

NOTES


 $^{\left(1\right) }$ Installation of the anchors in the two internal holes (IN).

 $^{\left(2\right) }$ Installation of the anchors in external holes (OUT).

For the GENERAL PRINCIPLES of calculation, see page 249.

For the anchors verification refer to page 248.

■ STRUCTURAL VALUES | **TCF200** | TIMBER-TO-CONCRETE | F₄ | F₅ | F_{4/5}

		TIMBER			CONCRETE				
	fastenir	ng holes Ø5		R _{4,k timber}	fastening holes			IN ⁽¹⁾	
F ₄	type	ØxL	n _V		Ø	n _H	k _{t⊥}	k _{t//}	
		[mm]	[pcs]	[kN]	[mm]	[pcs]			
full nattorn	LBA	Ø4 x 60	30	106	M12	2	0,5		
full pattern	LBS	Ø5 x 70	30	18,6	MIZ	2	0,5	-	

The group of 2 anchors must be verified for: $V_{Sd,y}$ = 2 x $k_{t\perp}$ x $F_{4,d}$

		TIMBER				STEEL		CONCRETE			
	fastenir	R _{5,k timber}	R _{5,k steel}		fastening holes		IN ⁽¹⁾				
F ₅	type	ØxL	n _V				Ø	n _H	$\mathbf{k}_{t\perp}$	k _{t//}	
		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]			
full mattage	LBA	Ø4 x 60	30	6,4	0.5		1412	2	0.5	0.27	
full pattern	LBS	Ø5 x 70	30	19,3	9,5	У мо	M12	2	0,5	0.27	

The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_{t\perp} \times F_{5,d}$ $N_{Sd,z} = 2 \times k_{t/\!/} \times F_{5,d}$

		TIMBER	?		CONCRETE				
F _{4/5} TWO ANGLE BRACKETS	fastenir	ng holes Ø5		R _{4/5,k timber}	fastenir	IN ⁽¹⁾			
	type	ØxL	n _V		Ø	n _H	$\mathbf{k}_{t_{\perp}}$	k _{t//}	
		[mm]	[pcs]	[kN]	[mm]	[pcs]			
full pattors	LBA	Ø4 x 60	30 + 30	25,0	M12	2 + 2	0,31	0,10	
full pattern	LBS	Ø5 x 70	30 + 30	28,1	14/17	2 + 2	0,31	0,10	

The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_t \times \bot F_{5,d}$ $N_{Sd,z} = 2 \times k_{t/\!\!/} \times F_{4/5,d}$

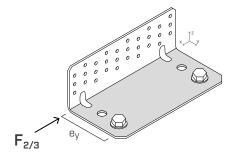
NOTES

For the GENERAL PRINCIPLES of calculation, see page 249.

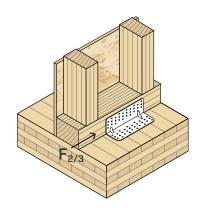
[•] The F_4 , F_5 , $F_{4/5}$ values in the table are valid for the calculation eccentricity e=0 (timber elements prevented from rotating).

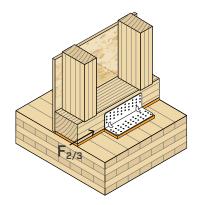
 $^{^{(1)}}$ Installation of the anchors in the two internal holes (IN).

■ TCF200 | ANCHORS VERIFICATION FOR STRESS LOADING F_{2/3}


Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the tabulated geometric parameters (e).

ey calculation eccentricities vary depending on the type of installation selected: 2 internal anchors (IN) or 2 external anchors (OUT).


The anchor group must be verified for:


 $V_{Sd,x} = F_{2/3,d}$

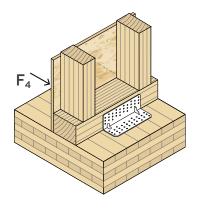
 $M_{Sd,z} = F_{2/3,d} \cdot e_{y,IN/OUT}$

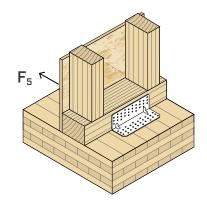
■ STRUCTURAL VALUES | TTF200 | TIMBER-TO-TIMBER | F_{2/3}

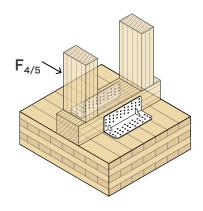
TIMBER STRENGTH

configuration	fastening holes Ø5				R _{2/3,k timber}	K _{2/3,ser}
on timber	type	ØxL	n _V	n _H		
		[mm]	[pcs]	[pcs]	[kN]	[N/mm]
full pattern	LBA	Ø4 x 60	30	30	48,9	10000
	LBS	Ø5 x 70	30	30	55,1	10000
pattern 3	LBA	Ø4 x 60	15	15	28,8	7000
	LBS	Ø5 x 70		13	36,3	7000
pattern 2	LBA	Ø4 x 60	10	10	20,8	
	LBS	Ø5 x 70			20,0	-

TIMBER-SIDE STRENGTH WITH ACOUSTIC PROFILE


configuration	fastening holes Ø5				R _{2/3,k timber}	K _{2/3,ser}
on timber	type	ØxL	n _V	n _H		
		[mm]	[pcs]	[pcs]	[kN]	[N/mm]
full pattern + XYLOFON	LBA	Ø4 x 60	30	30	40,8	7000
	LBS	Ø5 x 70			45,1	7000
pattern 3 + XYLOFON	LBA	Ø4 x 60	15	1.5	24,1	
	LBS	Ø5 x 70		15	28,3	-


NOTES


For the GENERAL PRINCIPLES of calculation, see page 249.

The F_4 , F_5 , $F_{4/5}$ values in the table are valid for the calculation eccentricity e=0(timber elements prevented from rotating).

■ STRUCTURAL VALUES | **TTF200** | TIMBER-TO-TIMBER | F₄ | F₅ | F_{4/5}

	TIMBER						
F ₄		R _{4,k timber}					
	type	ØxL	n				
		[mm]	[pcs]	[kN]			
full pattern	LBA	Ø4 x 60	Ø4 x 60 30+30				
	LBS	Ø5 x 70	30+30	29,7			

		TIMBER	STEEL			
	fastening holes Ø5			R _{5,k timber}	R _{5,k steel}	
F ₅	type	ØxL	n			
		[mm]	[pcs]	[kN]	[kN]	Ysteel
full pattern	LBA	Ø4 x 60	30+30	6,4	0.5	
rutt pattern	LBS	Ø5 x 70	30+30	19,3	9,5	У мо

	TIMBER						
F _{4/5} TWO ANGLE BRACKETS	fastening	holes Ø5		R _{4/5,k timber}			
	type	ØxL	n				
		[mm]	[pcs]	[kN]			
full pattern	LBA	Ø4 x 60	60+60	36,2			
	LBS	Ø5 x 70	00+60	39,2			

GENERAL PRINCIPLES

- Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0496.
- Design values can be obtained from characteristic values as follows:

$$R_d = min \quad \begin{cases} \frac{R_{k, timber} \cdot k_{mod}}{\gamma_M} \\ R_{d, concrete} \end{cases}$$

The coefficients $k_{\rm mod}$ and $\gamma_{\rm M}$ should be taken according to the current regulations used for the calculation.

- Dimensioning and verification of timber and concrete elements must be carried out separately. Verify that there are no brittle failures before reaching the connection strength.
- Structural elements in timber, to which the connection devices are fastened, must be prevented from rotating.
- A timber density of $\rho_k = 350 \text{ kg/m}^3$ was considered for the calculation process. For higher ρ_k values, the strength on timber side can be converted by

$$k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5}$$
 for 350 kg/m³ $\leq \rho_k \leq 420 \text{ kg/m}^3$
 $k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5}$ for LVL with $\rho_k \leq 500 \text{ kg/m}^3$

In the calculation phase, a strength class of C25/30 concrete with thin reinforcement was considered, in the absence of spacing and distances from the edge and minimum thickness indicated in the tables listing the installation pa-

rameters of the anchors used. The strength values are valid for the calculation hypothesis defined in the table; for boundary conditions different from the ones in the table (e.g. minimum distances from the edge or different concrete thickness), the concrete-side anchors can be verified using MyProject calculation software according to the design requirements.

- Seismic design in performance category C2, without ductility requirements on anchors (option a2) and elastic design according to EN 1992:2018. For chemical anchors subjected to shear stress it is assumed that the annular space between the anchor and the plate hole is filled ($\alpha_{\text{qap}}=1$).
- The product ETAs for the anchors used in the concrete-side strength calculation are indicated below:
 - VIN-FIX chemical anchor according to ETA-20/0363;
 - HYB-FIX chemical anchor according to ETA-20/1285;
 - SKR screw-in anchor according to ETA-24/0024;
 - AB1 mechanical anchor according to ETA-17/0481 (M12).

INTELLECTUAL PROPERTY

- TITAN F angle brackets are protected by the following Registered Community Designs:
 - RCD 002383265-0002;
- RCD 002383265-0004

UK CONSTRUCTION PRODUCT EVALUATION

• UKTA-0836-22/6373.